P P SAVANI UNIVERSITY

Third Semester of B. Tech. Examination Nov-Dec 2021

SESH2031 Differential Methods for Chemical Engineers

03.12.2021, Friday Time: 09:00 a.m. To 11:30 a.m. Maximum Marks: 60

Instructions:

 3. 	The question paper comprises of two sections. Section I and II must be attempted in separate answer sheets. Make suitable assumptions and draw neat figures wherever required. Use of scientific calculator is allowed.						
		SECTIO	N – I				
Answer the Following: (Any Six)							
	Q-1	Solve $y \log y dx + (x - \log y) dy = 0$.			[05]		
	Q - 2	Solve $\frac{dr}{d\theta} = r \tan \theta - \frac{r^2}{\cos \theta}$.			[05]		
	Q-3	Using the method of variation of parameters,	solve ($(D^2 - 2D + 2)y = e^x \tan x$	[05]		
	Q-4	Solve $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$, given that $\frac{\partial z}{\partial y} = -2 \text{ s}$			[05]		
		multiple of $\frac{\pi}{2}$.	, **1	ion x = 0 and z = 0, when y is an oud	[oo]		
	Q - 5	Solve $(D^2 - 2DD' + D'^2)z = \tan(y + x)$.			[05]		
	Q-6	Solve $(y + z)p + (z + x)q = x + y$.			[05]		
	Q - 7	Find the Laplace transform of the following: (a) $(1 + 2t - 3t^2 + 4t^3)u(t - 2)$			[05]		
		(b) $\int_0^t \int_0^t \sin at dt dt$					
	Q - 8	Find the inverse Laplace transform of $\frac{s-3}{s^2+4s+1}$	3.		[05]		
	Q - 9	Find the inverse Laplace transform of $\frac{1}{(s-2)^4(s)}$	usi	ng convolution theorem.	[05]		
	SECTION – II						
	Q - 1	Answer the Following:					
	(i)	Z-transform of 4 ⁿ is					
		(a) $\frac{z}{z+4}$	(b)	Z			
		(c) $\frac{1}{7+4}$	(4)	$\frac{z}{z-4}$ $\frac{1}{z-4}$			
		2 T 4	(a)	$\overline{z-4}$			
	(ii)	Which of the following is an odd function?					
		(a) $\sin x$	(b)	$e^x + e^{-x}$ $\pi^2 - x^2$			
	(iii)	(c) $e^{ x }$	(d)	$\pi^2 - x^2$			
	(iii)	Fundamental period of $\sin 2x$ is		π			
		(a) $\frac{\pi}{2}$	(b)	$\frac{\pi}{4}$			
		(c) 2π	(d)	π			
	(iv)	A function $f(x)$ is said to be even if $f(-x) = f(x)$		F(, ,) = F(,)			
		(a)	(b)	f(-x) = -f(x)			
		$(c) f(x+2\pi) = f(x)$	(d)	$f(-x) = \big(f(x)\big)^2$			
	(v)	The value of a_0 in Fourier series expansion of	f(x) =	$= x^2, -1 < x < 1 $ is			
		(a) $\frac{1}{3}$	(b)	$\frac{1}{2}$			

(d)

Q - 2 (a)	Find the Z-transform of $n\cos n\theta$	[05]		
Q-2(b)	Find the half-range cosine series of $f(x) = (x - 1)^2$ in $0 < x < 1$.	[05]		
,	OR			
Q - 2 (a)	Find the Z-transform of $\frac{7z-11z^2}{(z-1)(z-2)(z+3)}$	[05]		
Q-2(b)	Find the half-range sine series of $f(x) = x^2$ in the interval $(0, \pi)$.	[05]		
Q - 3 (a)	Find the Fourier series of $f(x) = x$ in $-\pi < x < \pi$.	[05]		
Q-3 (b)	Find the Fourier integral representation of the function $f(x) = \begin{cases} 1 - x^2, & x \le 1 \\ 0, & x > 1 \end{cases}$	[05]		
	OR			
Q - 3 (a)	Find the Fourier series of $f(x) = e^{ax}$ in the interval $(-\pi, \pi)$.	[05]		
Q-3 (b)	Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}$, $x \ge 0$	[05]		
Q - 4	Attempt any one:	[05]		
(ii)	Using Fourier transform, find the solution of the differential equation			
	$y' - 4y = H(t)e^{-4t}$, $-\infty < t < \infty$ where $H(t) = u_0(t)$ is the unit step function.			
(iii)	Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$.			
